Explicações de Probabilidade e Estatística – PE

Probabilidade e Estatística é a denominação usada pelo Instituto Superior Técnico – IST ou a Faculdade de Ciências e Tecnologia de Lisboa – FCT  entre outras escolas de ensino superior para a disciplina que versa conteúdos da ciência estatística tais como: Axiomática de Kolmogorov . Teorema de Bayes. Função de distribuição. Variáveis aleatórias discretas e contínuas. Valor esperado, variância e outros parâmetros.

Distribuições conjunta, marginais e condicionadas. Independência. Correlação. Aproximações entre distribuições. Teorema do limite central. Lei dos Grandes Números.   Propriedades dos estimadores. Método da máxima verosimilhança. Distribuições amostrais da média e variância. Intervalos de confiança para parâmetros de populações normais e outras. Testes de hipóteses para parâmetros de populações normais e outras. Testes de ajustamento de Pearson e independência em tabelas de contingência. Estimação pelo método dos mínimos quadrados. Inferência no modelo de regressão linear simples.

O nosso Centro de Explicações, situado na Av de Roma, em Lisboa, convida os alunos do ensino superior a frequentar as nossas explicações e a ultrapassar com sucesso as dificuldades desta cadeira de estatística.

Consulte os nossos preços e contacte-nos.

Explicações de Análise Matemática

A análise matemática é o ramo da matemática que utiliza os conceitos introduzidos pelo cálculo diferencial e integral, e a sua ” génese ” emergiu pela necessidade de contribuir para a construção de fórmulas rigorosas às ideias de teor intuitivo do cálculo.

A disciplina de Análise Matemática, faz parte do ” curriculum” de muitas Instituições Universitárias e Politécnicas, estando presente em rigorosamente todos os cursos em que a matemática é a base dos mesmos ou a ciência matemática constitua ferramenta essencial para a resolução de problemas inter-correlacionados. São exemplos, todas as licenciaturas, mestrados e doutoramentos nas àreas da engenharia, da economia, da gestão empresarial, da matemática aplicada, da  física, da química, entre outras. A disciplina análise matemática, nem sempre tem o mesmo nome em todas as Universidades e Institutos Politécnicos, sendo apelidada também por cálculo ou cálculo infinitesimal ou cálculo diferencial e integral ou matemáticas gerais, mas ” latus sensus” corresponde a programas semelhantes, se considerarmos o conjunto alargado de disciplinas de análise e que integram a análise matemática I, a análise matemática II, e em algumas Instituições mesmo a análise matemática III e IV.

A análise matemática é a disciplina, juntamente com álgebra e estatística que mais alunos do ensino superior tem procurado apoio no nosso Centro de Explicações e face ao qual nos sentimos orgulhosos, já que dispomos de vários Professores com competência inequívoca para esse auxílio.

Os explicadores do nosso Centro de Explicações estão aptos a apoiá-lo para compreender, funções reais de variável real, estudo de funções com variáveis independentes, derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas paramétricamente, derivadas parciais, primitivas e cálculo integral em |R, integrais múltiplos e integrais duplos, equações diferenciais de ordem 1 e superior, Series ( critério de comparação, Alambert, Cauchy, convergência, somas… etc ), polinómio de Taylor para funções… etc.

O insucesso escolar é uma realidade, mas o sucesso também.

Consulte os nossos preços acessíveis, contacte-nos e venha receber explicações de Análise Matemática. Ajudamos a preparar o seu sucesso.

Explicações de Física e Química

Explicações de  Física e Química aos alunos do ensino secundário.Preparação para os exames nacionais e explicações visando o acompanhamento a aluno durante os testes intermédios e outros ou durante o ano letivo.fisica e quimica

O programa nacional tem o objetivo de formar os alunos nesta formação específica, em três componentes distintas: educação em ciência, educação sobre a ciência e educação pela ciência. São objetivos centrais para o Ministério de Educação, entre outros, o reconhecimento do impacto do conhecimento físico e químico na sociedade, ( o qual, releve-se, que sofreu um espantoso desenvolvimento no último século e em particular na última metade do século XX), a distinção entre conhecimento ciêntifico e não ciêntifico ( conhecimento empírico,  conhecimento tradicional … ).Por outro lado, pretendem as autoridades educativas nacionais que se criem nos alunos do ensino secundário, no âmbito desta disciplina, competências processuais, conceptuais, sociais, atitudinais e axiológicas.Pois, serão essas as linhas mestras dos professores do Quantum-Centro de Explicações de Lisboa, ao ministrarem explicações de física e química, abordando temáticas como as leis da termodinâmica, os mecanismos de transferência de calor ( condução e convecção ), o atrito e a variação da energia mecânica, a energia cinética, os equilíbrios e desiquilíbrios químicos, a acidez e a basicidade do H2O, concentração hidrogiónica e o PH, auto-ionização da água … e muito mais. Consulte os nossos preços e solicite mais informações em Explicações de física e química.

Explicações de Matemática

A matemática continua a ser uma disciplina em que grande parte dos alunos enfrenta dificuldades acrescidas.

Este fenómeno não é apenas, sensível no universo escolar Português e abrange genericamente os alunos das escolas de quase todo o mundo (embora no nosso país esse fenómeno seja mais marcante), nomeadamente, nos países desenvolvidos ou em vias de desenvolvimento.

Segundo as estatísticas oficiais, na União Europeia,  23% dos alunos do ensino básico, 68% dos alunos do ensino secundário e 31% dos estudantes do ensino superior, nos grandes centros urbanos, recebem explicações clássicas ou algum apoio complementar, no âmbito dos conhecimentos matemáticos.

As explicações presenciais e individuais em sala, são a melhor forma de ajudar os alunos a assimilarem com crítérios consolidados e pedagógicos, o conjunto de conceitos abstratos, porque numéricos, que refletem realidades insofismáveis.

A matemática requer por parte do aluno a apreensão sólida de conhecimentos teóricos que devem ser posteriormente testados ( cimentados ) em utilizações   práticas, isto é, a matemática necessita de pesquisa “laboratorial”.

Uma das formas erróneas, inscritas na pedagogia oficial do ensino da matemática a alguns anos a esta parte,  tem sido a  ” facilitação ” dos raciocínios, nomeadamente os raciocínios lógicos, enquadrando as experiências de jogos, meramente como interpretações de realidades, muito valorativas dos comportamentos e pouco adaptadas ao raciocínios em  contextos ciêntifico-sociais.

Por outro lado, esta facilitação do ensino de matemática, levaram os professores a utilizarem metodologias que repeliam e persistem ainda um pouco a repelir, o exercício de memorização, quando o treino de memorização, também, é essencial à nossa realidade objetiva.

Neste domínio, é exemplificativo, a permissão em sala de aula e fora dela, das máquinas de calcular, para resolução de problemas matemáticos, logo em tenra idade, como acontecia no 1º ciclo e 2º ciclo ( cálculos aritméticos) ou mesmo já no 3º ciclo ( para ajuda a cálculos matemáticos ).

A despeito da situação ter melhorado um pouco nos últimos anos, estamos longe, de um ensino-aprendizagem da matemática eficiente.

Essa realidade é ainda mais visível, quando alunos do 9º ano, com notas relativamente satisfatórias, ao passarem para o 10º ano de escolaridade, tem abruptamente classificações  negativas.

De facto a partir do ensino secundário o conteúdo programático e a exigência de conhecimentos da ciência matemática já não é tão facilitador e o impacto na consistência das bases de matemática (que deveriam estar cimentadas no ensino básico) é muito forte.

As explicações de matemática tem um papel muito importante na aquisição dos saberes, pois substituem (em todo o mundo), um ensino massificado na escola por um ensino personalizado e atendível às necessidades de competência específicas de um aluno concreto ( que não de uma turma).

O Quantum-explicações, ministra explicações de matemática, no sentido clássico e com excelente sucesso dos seus explicandos, por isso dizemos que temos respostas pedagógicas para si. Contacte-nos e informe-se sobre os nossos preços acessíveis para explicações de matemática do 1º ciclo, 2º ciclo, 3º ciclo e ensino secundário.

Explicações de Análise Complexa e Equações Diferenciais

Uma equação diferencial é aquela em que a função incógnita surge sob a forma da sua respetiva derivada. Os fundamentos das equações diferenciais estão tão dominados pelas contribuições do matemático Leonhard Euler, que sentimos quase um impulso em afirmar que a história desta temática começa e termina com ele. Mas obviamente que isso, seria uma simplificação grosseira do seu desenvolvimento. Existem vários contribuintes importantes, e aqueles que vieram antes de Euler foram necessários para que ele pudesse entender o cálculo e a análise, necessários para desenvolver muitas das ideias fundamentais.

Análise Complexa e Equações Diferenciais

Com efeito, as equações diferenciais começaram com os inventores do cálculo, Newton, Fermat e Leibniz, já que são estes os brilhantes matemáticos que procederam à descoberta para a derivada, que de forma subsequente apareceu em equações. No entanto as equações diferenciais, se exceptuarmos as equações separáveis eram e ainda hoje são difíceis de resolver se não dominarmos técnicas próprias de resolução. O método de separação das variáveis foi desenvolvido por Jakob Bernoulli e generalizado por Leibniz a partir da integral ( antiderivada).

Outros matemáticos deram contribuições relevantes nesta área, como são os exemplos de Joseph Lagrange ( mostrou que a solução geral de uma equação diferencial linear homogénea de grau n é uma combinação linear de n soluções independentes), joseph Fourrier ( resolve a equação diferencial parcial – series de Fourrier), Legrende. Hankel, Bessel, Chebyshev, Hermite ( resolução de equações diferenciais ordinárias), Gauss e Cauchy ( desenvolvimento do conceito de funções de variáveis complexas), Laplace ( melhor entendimento das técnicas numéricas e da integração), etc .

Muitos dos alunos , apresentam  algumas dificuldades no entendimento do conteúdo programático desta unidade curricular .

Os professores ( mestres , doutorandos e doutorados ) do nosso Centro de Explicações, poderão ser uma

Leonhard Euler

 

ajuda relevante para o seu sucesso na  “cadeira“  de Análise Complexa e Equações Diferenciais, permitindo a compreensão das coordenadas polares, séries numéricas e de potência, funções harmónicas e núcleo de Poisson, integrais de linha,  funções  C  diferenciáveis, regra de derivação, fórmulas integrais de Cauchy, fórmula de Taylor, integrais de variável real, integrais impróprios, transformada de Laplace e a resolver equações e muito mais …

Contacte-nos, temos respostas pedagógicas para si.

Equação diferencial

 

ORDEM DE UMA EQUAÇÃO DIFERENCIALé a ordem da mais alta derivada que nela aparece.

GRAU DE UMA EQUAÇÃO DIFERENCIAL: considerando as derivadas como um polinómio, é o grau da derivada de mais alta ordem que nela aparece.

SOLUÇÃO OU INTEGRAL GERAL: é toda a função que verifica, identicamente, a equação diferencial e vem expressa em termos de n constantes arbitrárias. Se a equação é de primeira ordem, aparece uma constante, se é de segunda ordem, duas constantes, etc..

Explicações de Cálculo Diferencial e Integral

calculo integral

Explicações de Cálculo Diferencial e Integral .

Algumas Instituições do ensino superior denominam de Cálculo, ou mais apropriadamente de Cálculo Diferencial e Integral, como é o caso do IST- Instituto Superior Técnico,  a unidades curriculares cujos conteúdos programáticos são semelhantes, em outras Instituições universitárias e politécnicas, a despeito dos nomes desta ” cadeira ” divergirem para  mais vulgarmente, Análise Matemática  ou com menos frequência Matemática .

Números reais e números naturais, a utilização do método indutivo para demonstrações, sucessões, limite de sucessões, sucessão de Cauchy, estudo das funções reais de variável real, incluindo limites e continuidades das mesmas, diferenciabilidade, fórmula de Taylor, cálculo de primitivas, cálculo integral em R, integral de Riemenn, fórmulas de integração imediatas, por substituição, por partes, funções hiperbólicas, séries de potência, séries geométricas, critérios de comparação, séries divergentes e absolutamente convergentes, são entre outras ” matérias ” associadas às cadeiras de Cálculo Diferencial e Integral, Análise Matemática  ou Matemática , as quais os estudantes terão que ultrapassar nos primeiros anos dos cursos de licenciatura que frequentam no ensino superior.

Os nossos explicadores,  preparam com êxito, imensos estudantes na realização da ” cadeira ” de Cálculo Diferencial e Integral, pois no nosso quadro integramos explicadores com experiência científica e pedagógica, alguns ex Professores Universitários, para ministrar explicações de Cálculo Diferencial e Integral.

Se deseja ser ajudado a ultrapassar as dificuldades inerentes ao Cálculo Diferencial e Integral, não perca tempo e solicite mais informações sobre as explicações e consulte os nossos preços.

calculo

Explicações de Português

Explicações de Português no Quantum-Explicações. Nas nossas salas na Av. de Roma, em Lisboa, preparamos os alunos para os exames nacionais das disciplinas de Português  e Língua Portuguesa ou para o sucesso nas provas de avaliação durante o ano letivo.

Os programas de Português do ensino secundário e de Língua Portuguesa do ensino básico, pretendem  não só dotar os alunos de competências específicas, mas também de competências gerais.

São eixos de atuação no ensino básico :

–  O eixo da experiência humana, onde se situa a tensão entre a individualidade e a  Comunidade.

–  O eixo da comunicação linguística, dominado pela interação do sujeito linguístico com os outros, seja pela prática da oralidade, seja pela prática da escrita.

– O eixo do conhecimento trans linguístico, remetendo para a relação da língua com a aquisição de outros saberes a que ela dá acesso e que por seu intermédio são representados.

No que concerne ao ensino secundário.

Para além dos textos literários estudados, o objetivo fulcral da disciplina de Português, seja ela o Português A ou Português B, é o de criar e desenvolver competências linguísticas.

São inerentes a estas competências, o desenvolvimento e o aprimoramento das capacidades de falar, escrever e compreender, quer sejam enunciados escritos quer orais.

   

As explicações de Português, que também visam preparar o exame nacional, no final do 12º ano, que avalia as referidas competências e o conhecimento sobre os autores literários estudados. O percurso programático do 12º ano, incorpora o Realismo, a Geração de Setenta, Antero de Quental, Eça de Queirós- Os Maias, Cesário Verde, o Modernismo, Fernando Pessoa ortónimo, Heterónimo Alberto Caeiro, Heterónimo Álvaro de Campos, Heterónimo Ricardo Reis, Fernando Pessoa- Mensagem, Luís de Stau Monteiro- Felizmente há luar, Miguel Torga, Sophia de Melo Breyner, Eugénio de Andrade, Virgílio Ferreira-  Aparição ou José  Saramago- Memorial Do Convento

                

Explicações de Língua Portuguesa ao 1º Ciclo, ao 2º Ciclo, ao 3º Ciclo e de Português ao ensino secundário.

Consulte os nossos preços  sobre as Explicações de Português, em Lisboa                                              

                                                                     

Explicações de Geometria Descritiva

O Centro de Explicações de Lisboa, em Alvalade, possui no seu quadro, Professores para lhe dar explicações de Geometria Descritiva. 

A geometria mongeana,

correntemente denominada por geometria descritiva é um ramo da geometria que tem como objetivo representar objetos de três dimensões num plano bidimensional. Esse método foi desenvolvido por Gaspard Monge e teve grande impacto no desenvolvimento tecnológico sendo considerada, no início da sua sistematização, como segredo de Estado.  

A Geometria Descritiva serve de base teórica ao desenho técnico, permitindo a construção de vistas auxiliares, cortes, secções, rebatimentos, rotações, interseções de planos e sólidos, mudança de planos de projeção, determinação de verdadeiras grandezas  de distâncias, ângulos e superfícies, bem como o cálculo de volumes a partir dos dados extraídos das projecções ortogonais.

Para a arquitetura, engenharia ou o design de produtos ou equipamentos o conhecimento da geometria descritiva é essencial. A existência de um mais profundo conhecimento do método de Monge, permite utilizar com maior adequação, todo o potencial dos programas de CAD e das modelagens em 3D, que exigem o domínio de medidas, curvaturas e ângulos exatos.

A modelagem tridimensional comporta  no seu entendimento e construção os conceitos da Geometria Descritiva. É insuficiente o entendimento, para gerar maquetes virtuais de qualidade, sem o conhecimento de conteúdos específicos da mesma, como por exemplo, a localização de pontos através de coordenadas (X, Y, Z) nas suas formas absolutas ou relativas.

Também no domínio das artes, nomeadamente na Geometria Descritiva, os explicadores da Quantum-Explicações, estão disponíveis e motivados, no nosso Centro em Alvalade ( Av. de Roma) em ajudar os alunos a ultrapassar as dificuldades, como o fazemos em muitas  àreas do conhecimento, como na matemática, física, química, biologia, economia e no domínio das ciências humanas.

Consulte os nossos preços ou solicite mais informação sobre as Explicações de Geometria Descritiva em Lisboa

Explicações de Estatística Lisboa

À ciência que dispõe de processos apropriados para recolher, organizar, classificar, apresentar e interpretar conjuntos de dados, apelidamos de Estatística.

Estatística permite extrair informação dos dados por forma a  obter uma melhor compreensão das situações que representam uma determinada realidade.

O Quantum – Centro de Explicações de Lisboa, ministra explicações de estatística, também denominada de ” Probabilidade e Estatística ” em algumas Instituições do ensino superior em Portugal, nomeadamente no IST – Instituto Superior Técnico ou na FCT – Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa.

A absorção de conceitos fundamentais, a capacidade de manuseamento dos dados e a utilização de cálculos para engendar respostas são essenciais na estatística.

Por isso. os explicadores ( licenciados, mestres ou doutorados) do nosso Centro de Explicações, transmitirão aos estudantes conhecimentos que viabilizem a aprendizagem da estatística, desde os elementos mais básicos, alguns já apreendidos no ensino secundário (espaço de resultados, acontecimentos, acontecimentos independentes … ) até aos mais complexos (axiomática de Kolmogorov, variáveis aleatórias das funções de distribuição, função geradora de momentos,  valor esperado e momentos de variáveis aleatórias bidimensionais, inferência estatística), distribuições discretas ( distibuições de Bernoulli e de Poisson) ou distibuições contínuas ( distribuições normal, exponencial, Gama, quiquadrado, teorema do limite central).

Modelo de regressão linear

Estas são normalmente as temáticas, genéricas, dos conteúdos programáticos das cadeiras de estatística de primeiro ano nas Instituições de ensino superior. Contudo, a ciência estatística, não se dissolve nos temas acima referenciados e em muitas Instituições universitárias os programas curriculares da cadeira de estatística ( frequentemente chamada de estatística II e mesmo de estatística III nos cursos de licenciatura) contemplam outras matérias de desenvolvimento, abordando a estimação, os testes de hipóteses, modelos não paramétricos, modelos de regressão linear e complementos a este modelo.

Em alguns cursos de mestrado com forte componente matemática e mesmo em doutoramento estudam-se conteúdos de estatística avançada e  processos estocásticos.

A necessidade de formular  políticas públicas por por parte do Estado, está na origem da estatística, já que a recolha, organização e tratamento de dados concernentes aos elementos de teores económicos, demográficos e de administração pública eram e são importantes para a criação dessas políticas.

No primeiro quatil do século XIX registou-se um incremento da abrangência da utilização da estatística ao incluir a acumulação e análise de dados, sendo hoje a estatística amplamente aplicada nas ciências naturais e nas ciências sociais inclusive na administração pública e gestão privada das organizações e empresas “stritus sensus”.

Os fundamentos matemáticos construídos no século XVII com o desenvolvimento da teoria das probabilidades por Pascal e Fermat e o método dos mínimos quadrados, descrito pela primeira vez por Carl Gauss e o uso dos computadores da era contemporânea permitiram a computação dos dados estatísticos em larga escala, possibilitando novos métodos, antes julgados impossíveis.

Navegue no nosso site, consulte os nossos preços acessíveis, peça mais esclarecimentos e aceite a ajuda dos nossos explicadores, contactando-nos, pois queremos ser parte do seu sucesso nas cadeiras de estatística.

Explicações de Electromagnetismo e Óptica (EO)

Um dos conteúdos programáticos que os alunos, principalmente aqueles que  iniciam o ensino universitário,  sentem dificuldades, é sem dúvida o que se relaciona, com os programas da ciência física em particular a temática do eletromagnetismo.

Podendo estes conteúdos, serem inseridos em “cadeiras” com diversas denominações, podemos apelida-los, tomando como exemplo o Instituto Superior Técnico, ” Eletromagnetismo e Ótica “.

Esta unidade curricular exige a realização recorrente de cálculos matemáticos e o conhecimento teórico a par com a utilização cognitiva de leis físicas, das quais destacamos a Lei de Gauss, Lei de Joule, Lei de Ohm, Lei de Kirchoff, Lei de Ampére, Lei de Biot-Savart, Lei de Faraday, Lei de reflexão e refração, Lei de Coulomb, princípio de Fermat, entre outras.                                               eletromagnetismo

Os explicadores do Quantum-Explicações irão ajudá-lo a ultrapassar as suas dificuldades, explicando-lhe, entre outros …

O campo eletrostático no vácuo

Noção de campo e potencial

O campo eletrostático na matéria

A corrente elétrica estacionária

Densidade e intensidade da corrente

O campo magnético no vácuo

O campo magnético na matéria

As ondas eletromagnéticas, ondas planas monocromáticas

A indução eletromagnética

O carácter eletromagnético da luz

e a aplicar corretamente, os cálculos matemáticos inerentes à aplicação dos conhecimentos, utilizando a equação da continuidade de carga, as equações de Maxwell ou as equações de Fresnel e entre outras.

Solicite mais informações e consulte os nossos preços, para as explicações em sala no nosso Centro na Av. de Roma.