Explicações de Cálculo Diferencial e Integral

Algumas Instituições do ensino superior denominam de Cálculo, ou mais apropriadamente de Cálculo Diferencial e Integral, como é o caso do IST – Instituto Superior Técnico,  a unidades curriculares cujos conteúdos programáticos são semelhantes, em outras Instituições universitárias e politécnicas, a despeito dos nomes desta ” cadeira ” divergirem para  mais vulgarmente, Análise Matemática I ou com menos frequência Matemática I. calculo integral

Números reais e números naturais, a utilização do método indutivo para demonstrações, sucessões, limite de sucessões, sucessão de Cauchy, estudo das funções reais de variável real, incluindo limites e continuidades das mesmas, diferenciabilidade, fórmula de Taylor, cálculo de primitivas, cálculo integral em R, integral de Riemenn, fórmulas de integração imediatas, por substituição, por partes, funções hiperbólicas, séries de potência, séries geométricas, critérios de comparação, séries divergentes e absolutamente convergentes, são entre outras ” matérias ” associadas às cadeiras de Cálculo Diferencial e Integral, Análise Matemática I ou Matemática I, as quais os estudantes terão que ultrapassar nos primeiros anos dos cursos de licenciatura que frequentam no ensino superior.

Os nossos explicadores  prepararam com êxito, imensos estudantes na realização da ” cadeira ” de Cálculo Diferencial e Integral, pois no nosso quadro integramos explicadores com experiência científica e pedagógica para tal.

Se deseja ser ajudado a ultrapassar as dificuldades inerentes ao Cálculo Diferencial e Integral, não perca tempo e solicite mais informações e consulte os nossos preços.

calculo

Explicações de Probabilidade e Estatística – PE

Probabilidade e Estatística é a denominação usada pelo Instituto Superior Técnico – IST ou a Faculdade de Ciências e Tecnologia de Lisboa – FCT  entre outras para a cadeira que versa conteúdos da ciência estatística tais como: Axiomática de Kolmogorov . Teorema de Bayes. Função de distribuição. Variáveis aleatórias discretas e contínuas. Valor esperado, variância e outros parâmetros. Distribuições conjunta, marginais e condicionadas. Independência. Correlação. Aproximações entre distribuições. Teorema do limite central. Lei dos Grandes Números.   Propriedades dos estimadores. Método da máxima verosimilhança. Distribuições amostrais da média e variância. Intervalos de confiança para parâmetros de populações normais e outras. Testes de hipóteses para parâmetros de populações normais e outras. Testes de ajustamento de Pearson e independência em tabelas de contingência. Estimação pelo método dos mínimos quadrados. Inferência no modelo de regressão linear simples.

O nosso Centro de Explicações, situado na Av de Roma, em Lisboa, convida os alunos do ensino superior a frequentar as nossas explicações e a ultrapassar com sucesso as dificuldades desta cadeira de estatística.

Consulte os nossos preços e contacte-nos.