Explicações de Álgebra Linear

A álgebra é o ramo da matemática que estuda as aplicações formais de equações, operações matemáticas, estruturas algébricas e polinómios e apresenta-se como uma disciplina (conhecimento) independente em muitos cursos do ensino superior, universitário e politécnico.

A álgebra surgiu no Egipto quase ao mesmo tempo que na Babilônia; mas faltavam à álgebra egípcia, segundo Papiro Moscou e o Papiro Rhind (documentos egípcios datados respetivamente de cerca de 1850 a.C. e 1650 a.C), os métodos sofisticados da álgebra babilônica, bem como a variedade de equações resolvidas.

O sistema de numeração egípcio, relativamente primitivo em comparação com o dos babilônios, ajuda a explicar a falta de sofisticação da álgebra egípcia. Os matemáticos europeus do século XVI tiveram de estender a noção indo-arábica de número antes de poderem avançar significativamente, para além dos resultados babilônios de resolução de equações.

A álgebra, lecionada,  introduz o conceito de variável como representação de números, utilizando expressões em que estas variáveis são manipuladas através de regras operatórias aplicáveis a números, como a multiplicação e a adição.

Estes conceitos permitem, nomeadamente resolver equações.

Contudo a adição e a multiplicação podem ser generalizadas, permitindo as suas  definições exactas conduzirem-nos a estruturas, nomeadamente os conhecidos anéis, grupos e corpos, que são estudados na álgebra abstrata.

Os professores do Centro de Explicações de Lisboa, tem respostas pedagógicas para si, ajudando-o a desvendar os segredos da álgebra, explicando conceitos e cálculos :

  • Matrizes, sistema de equações lineares e determinantes ( conceito de matriz, cálculo do deteminante, desenvolvimento de Laplace, matrizes adjuntas e inversas, matriz identidade, propriedades operatórias, fórmula de Gauss-Jordan … etc)
  • Espaços e subespaços vetoriais ( conbinações lineares, dependência e independência linear, base de um espaço vetorial, mudança de base …etc )
  • Transformações lineares ( conceitos e teoremas, transformações do plano no plano …etc)
  • Valores e vectores próprios ( polinómio característico, … diagonalização de operadores, produto interno, tipos especiais de operadores lineares ), entre outros …

O nosso quadro de professores licenciados, mestres e doutorados oferecem-lhe as condições ” sine qua none ” do seu sucesso na cadeira de Álgebra Linear.

Navegue neste site e contacte-nos

Explicações de Análise Complexa e Equações Diferenciais

Uma equação diferencial é aquela em que a função incógnita surge sob a forma da sua respetiva derivada. Os fundamentos das equações diferenciais estão tão dominados pelas contribuições do matemático Leonhard Euler, que sentimos quase um impulso em afirmar que a história desta temática começa e termina com ele. Mas obviamente que isso, seria uma simplificação grosseira do seu desenvolvimento. Existem vários contribuintes importantes, e aqueles que vieram antes de Euler foram necessários para que ele pudesse entender o cálculo e a análise, necessários para desenvolver muitas das ideias fundamentais.

Análise Complexa e Equações Diferenciais

Com efeito, as equações diferenciais começaram com os inventores do cálculo, Newton, Fermat e Leibniz, já que são estes os brilhantes matemáticos que procederam à descoberta para a derivada, que de forma subsequente apareceu em equações. No entanto as equações diferenciais, se exceptuarmos as equações separáveis eram e ainda hoje são difíceis de resolver se não dominarmos técnicas próprias de resolução. O método de separação das variáveis foi desenvolvido por Jakob Bernoulli e generalizado por Leibniz a partir da integral ( antiderivada).

Outros matemáticos deram contribuições relevantes nesta área, como são os exemplos de Joseph Lagrange ( mostrou que a solução geral de uma equação diferencial linear homogénea de grau n é uma combinação linear de n soluções independentes), joseph Fourrier ( resolve a equação diferencial parcial – series de Fourrier), Legrende. Hankel, Bessel, Chebyshev, Hermite ( resolução de equações diferenciais ordinárias), Gauss e Cauchy ( desenvolvimento do conceito de funções de variáveis complexas), Laplace ( melhor entendimento das técnicas numéricas e da integração), etc .

Muitos dos alunos , apresentam  algumas dificuldades no entendimento do conteúdo programático desta unidade curricular .

Os professores ( mestres , doutorandos e doutorados ) do nosso Centro de Explicações, poderão ser uma

Leonhard Euler

 

ajuda relevante para o seu sucesso na  “cadeira“  de Análise Complexa e Equações Diferenciais, permitindo a compreensão das coordenadas polares, séries numéricas e de potência, funções harmónicas e núcleo de Poisson, integrais de linha,  funções  C  diferenciáveis, regra de derivação, fórmulas integrais de Cauchy, fórmula de Taylor, integrais de variável real, integrais impróprios, transformada de Laplace e a resolver equações e muito mais …

Contacte-nos, temos respostas pedagógicas para si.

Equação diferencial

 

ORDEM DE UMA EQUAÇÃO DIFERENCIALé a ordem da mais alta derivada que nela aparece.

GRAU DE UMA EQUAÇÃO DIFERENCIAL: considerando as derivadas como um polinómio, é o grau da derivada de mais alta ordem que nela aparece.

SOLUÇÃO OU INTEGRAL GERAL: é toda a função que verifica, identicamente, a equação diferencial e vem expressa em termos de n constantes arbitrárias. Se a equação é de primeira ordem, aparece uma constante, se é de segunda ordem, duas constantes, etc..