Centro de Explicações

O Centro de Explicações Quantum, está localizado na zona de Alvalade, mais precisamente na Av. de Roma em Lisboa, à saída do metro e muito próximo da estação ferroviária Roma-Areeiro, sendo assim um Centro de Explicações, no centro de Lisboa com excelentes vantagens de mobilidade para os alunos.

Centro de Explicações para o ensino básico

Centro de Explicações para o ensino secundário

Centro de Explicações para o ensino superior

Todos os nossos professores são licenciados, mestres ou doutorados nas  mais prestigiadas Instituições Universitárias .

 

Consulte os nossos preços e condições de acesso  e contacte-nos, temos respostas pedagógicas para si.

 

 

Explicações de Mecânica e Ondas

ou explicações de Vibrações e Ondas

A unidade curricular Mecânica e Ondas, também denominada de Vibrações e Ondas em algumas Instituições do ensino superior, insere-se no ramo da Ciência Física e normalmente é lecionada nos primeiros dois anos dos cursos de licenciatura pós Bolonha, nas universidades e escolas superiores, em que a componente dos conhecimentos de Física são relevantes. mecanica e ondas

Movimento no tempo e no espaço: cinemática, movimento relativo, dinâmica ( mecânica Newtoniana ), princípio de inércia, conceitos de massa e força, ação e reação, movimento harmónico simples, vibrações amortecidas ou forçadas, conservação da energia mecânica, energia cinética e energia potencial, sobreposição de duas vibrações no mesmo sistema e acoplamento de dois sistemas vibrantes, ondas ondulatórias, ondas eletromagnéticas: transformação de Lorenz e suas consequências, forças exteriores, centro de massa, sistemas conservativos e dissipativos, movimento de sistema de partículas, movimento de corpo rígido, aceleração e velocidade angular, rotação do corpo rígido, momentos de inércia, velocidade e propagação de ondas, equação da onda, ondas transversais e longitudinais,  pressão hidrostática, princípio de Arquimedes relatividade restrita de Einstein, dilatação do tempo e contração do espaço E=mc²  e outros … conceitos e leis físicas, serão ministradas pelos nossos explicadores aos nossos estudantes, no âmbito da cadeira de Mecânica e Ondas ou Vibrações e Ondas, por forma a ultrapassarem as dificuldades da disciplina.

Consulte os nossos preços, visite os items deste site/blog e contacte-nos para o ajudar a ultrapassar com sucesso a unidade curricular.

Explicações de Cálculo Diferencial e Integral

Algumas Instituições do ensino superior denominam de Cálculo, ou mais apropriadamente de Cálculo Diferencial e Integral, como é o caso do IST – Instituto Superior Técnico,  a unidades curriculares cujos conteúdos programáticos são semelhantes, em outras Instituições universitárias e politécnicas, a despeito dos nomes desta ” cadeira ” divergirem para  mais vulgarmente, Análise Matemática I ou com menos frequência Matemática I. calculo integral

Números reais e números naturais, a utilização do método indutivo para demonstrações, sucessões, limite de sucessões, sucessão de Cauchy, estudo das funções reais de variável real, incluindo limites e continuidades das mesmas, diferenciabilidade, fórmula de Taylor, cálculo de primitivas, cálculo integral em R, integral de Riemenn, fórmulas de integração imediatas, por substituição, por partes, funções hiperbólicas, séries de potência, séries geométricas, critérios de comparação, séries divergentes e absolutamente convergentes, são entre outras ” matérias ” associadas às cadeiras de Cálculo Diferencial e Integral, Análise Matemática I ou Matemática I, as quais os estudantes terão que ultrapassar nos primeiros anos dos cursos de licenciatura que frequentam no ensino superior.

Os nossos explicadores  prepararam com êxito, imensos estudantes na realização da ” cadeira ” de Cálculo Diferencial e Integral, pois no nosso quadro integramos explicadores com experiência científica e pedagógica para tal.

Se deseja ser ajudado a ultrapassar as dificuldades inerentes ao Cálculo Diferencial e Integral, não perca tempo e solicite mais informações e consulte os nossos preços.

calculo

Explicações de Física e Química

Explicações de  Física e Química aos alunos do ensino secundário.Preparação para os exames nacionais e explicações visando o acompanhamento a aluno durante os testes intermédios e outros ou durante o ano letivo.fisica e quimica

O programa nacional tem o objetivo de formar os alunos nesta formação específica, em três componentes distintas: educação em ciência, educação sobre a ciência e educação pela ciência.São objetivos centrais para o Ministério de Educação, entre outros, o reconhecimento do impacto do conhecimento físico e químico na sociedade, ( o qual, releve-se, que sofreu um espantoso desenvolvimento no último século e em particular na última metade do século XX), a distinção entre conhecimento ciêntifico e não ciêntifico ( conhecimento empírico,  conhecimento tradicional … ).Por outro lado, pretendem as autoridades educativas nacionais que se criem nos alunos do ensino secundário, no âmbito desta disciplina, competências processuais, conceptuais, sociais, atitudinais e axiológicas.Pois, serão essas as linhas mestras dos professores do Quantum-Centro de Explicações de Lisboa, ao ministrarem explicações de física e química, abordando temáticas como as leis da termodinâmica, os mecanismos de transferência de calor ( condução e convecção ), o atrito e a variação da energia mecânica, a energia cinética, os equilíbrios e desiquilíbrios químicos, a acidez e a basicidade do H2O, concentração hidrogiónica e o PH, auto-ionização da água … e muito mais.Consulte os nossos preços e solicite mais informações em Explicações de física e química.

Análise Vetorial e Equações Diferenciais

O Cálculo vetorial, é uma área da matemática relacionada com a análise real multivariável de vetores em duas ou mais dimensões.

Equações diferenciais são equações cuja incógnita é uma função que aparece na equação sob a forma das respectivas derivadas. Dada uma variável x, função de uma variável y, a equação diferencial envolve, x, y, derivadas de y e eventualmente também derivadas de x.

O domínio dos conceitos de limite, continuidade e diferenciabilidade de campos escalares e vetoriais, bem como o cálculo de integrais múltiplos e a resolução de equações diferenciais lineares de coeficientes constantes ou modelar situações reais usando campos escalares e/ou vectoriais são entre outras, exigências para obter sucesso nesta “ cadeira”.

Os explicadores da Quantum-Explicações, irão ajudar a ultrapassar

as dificuldades inerentes a muitas questões dos alunos, como, a

título de exemplo:

– matriz jacobiana. – Derivada da função composta. – Integrais duplos. Teorema de Fubini – Mudança de variáveis em integrais duplos; transformações lineares e coordenadas polares. – Integrais triplos. – Integrais de superfície. Representação paramétrica. – Integral de superfície de campos escalares. Propriedades. Aplicações. – Equações Diferenciais Ordinárias.

Veja os nossos preços e contacte-nos, pois temos soluções para o seu sucesso.
 

Explicações de Matemática ao 12º ano

A palavra “Matemática” tem origem na palavra grega “máthema” que significa Ciência, conhecimento ou aprendizagem, derivando daí “mathematikós”, que significa o prazer de aprender.

125 Em ano de exames nacionais de matemática, os professores do Centro de Explicações de Lisboa, irão fornecer uma ajuda decisiva para que haja prazer em aprender matemática, ajudando os alunos a compreender e a proceder aos respetivos cálculos, inerentes ao conteúdo programático da disciplina para o 12º ano, definido pelo Ministério de Educação, nomeadamente; combinações, arranjos, probabilidades, axiomática dos conjuntos, probabilidade condicionada, triângulo de Pascal, binómio de Newton, regra de Laplace, funções logarítmicas, funções exponenciais. limite de função segundo Heine, propriedades operatórias, sobre limites, limites notáveis, levantamento de indeterminações, continuidade e teorema de Bolzano-Cauchy, funções derivaveis, regras operatórias de derivação, estudo de funções ( crescimento, decrescimento e concavidades, máximos, mínimos e continuidades ), números complexos, conversão de números complexos na forma algébrica para a forma trigonométrica e da trigonométrica para a algébrica, operações com números complexos, domínio planos e condições em variável complexa.

Consulte os nossos preços e contacte-nos, temos respostas pedagógicas para superar as dificuldades na disciplina de matemática durante o ano letivo ( testes e avaliações) e prepará-lo para o exame nacional.

Explicações de Estatística Lisboa

À ciência que dispõe de processos apropriados para recolher, organizar, classificar, apresentar e interpretar conjuntos de dados, apelidamos de Estatística.

Estatística permite extrair informação dos dados por forma a  obter uma melhor compreensão das situações que representam uma determinada realidade.

O Quantum – Centro de Explicações de Lisboa, ministra explicações de estatística, também denominada de ” Probabilidade e Estatística ” em algumas Instituições do ensino superior em Portugal, nomeadamente no IST – Instituto Superior Técnico ou na FCT – Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa.

A absorção de conceitos fundamentais, a capacidade de manuseamento dos dados e a utilização de cálculos para engendar respostas são essenciais na estatística.

Por isso. os explicadores ( licenciados, mestres ou doutorados) do nosso Centro de Explicações, transmitirão aos estudantes conhecimentos que viabilizem a aprendizagem da estatística, desde os elementos mais básicos, alguns já apreendidos no ensino secundário (espaço de resultados, acontecimentos, acontecimentos independentes … ) até aos mais complexos (axiomática de Kolmogorov, variáveis aleatórias das funções de distribuição, função geradora de momentos,  valor esperado e momentos de variáveis aleatórias bidimensionais, inferência estatística), distribuições discretas ( distibuições de Bernoulli e de Poisson) ou distibuições contínuas ( distribuições normal, exponencial, Gama, quiquadrado, teorema do limite central).

Modelo de regressão linear

Estas são normalmente as temáticas, genéricas, dos conteúdos programáticos das cadeiras de estatística de primeiro ano nas Instituições de ensino superior. Contudo, a ciência estatística, não se dissolve nos temas acima referenciados e em muitas Instituições universitárias os programas curriculares da cadeira de estatística ( frequentemente chamada de estatística II e mesmo de estatística III nos cursos de licenciatura) contemplam outras matérias de desenvolvimento, abordando a estimação, os testes de hipóteses, modelos não paramétricos, modelos de regressão linear e complementos a este modelo.

Em alguns cursos de mestrado com forte componente matemática e mesmo em doutoramento estudam-se conteúdos de estatística avançada e  processos estocásticos.

A necessidade de formular  políticas públicas por por parte do Estado, está na origem da estatística, já que a recolha, organização e tratamento de dados concernentes aos elementos de teores económicos, demográficos e de administração pública eram e são importantes para a criação dessas políticas.

No primeiro quatil do século XIX registou-se um incremento da abrangência da utilização da estatística ao incluir a acumulação e análise de dados, sendo hoje a estatística amplamente aplicada nas ciências naturais e nas ciências sociais inclusive na administração pública e gestão privada das organizações e empresas “stritus sensus”.

Os fundamentos matemáticos construídos no século XVII com o desenvolvimento da teoria das probabilidades por Pascal e Fermat e o método dos mínimos quadrados, descrito pela primeira vez por Carl Gauss e o uso dos computadores da era contemporânea permitiram a computação dos dados estatísticos em larga escala, possibilitando novos métodos, antes julgados impossíveis.

Navegue no nosso site, consulte os nossos preços acessíveis, peça mais esclarecimentos e aceite a ajuda dos nossos explicadores, contactando-nos, pois queremos ser parte do seu sucesso nas cadeiras de estatística.

Explicações de Química Orgânica

A química orgânica é um ramo da química, com génese no estudo das substâncias que constituem a matéria viva e dos compostos resultantes das suas transformações.

Em muitas das Instituições de Ensino Superior, a cadeira de Química Orgânica, revela-se com alguma dificuldade para muitos estudantes.

Há muitos anos atrás, tanto os Fenícios como os Egípcios utilizavam produtos e técnicas “ cientificas “ para tingir têxteis, respectivamente a utilização de um corante de cor púrpura obtido das glândulas branquiais do molusco “ Merex Trunculus “ e o índigo ( com origem no anil ) e a alizarina . Ainda hoje é utilizado o índigo para tingir calças e outras peças de vestuário de ganga, a despeito deste corante ser obtido actualmente, através de processos industriais, o que revela que o Homem possui um domínio da química orgânica desde os primórdios da civilização.

A utilização de vinho para produzir vinagre e a fermentação das uvas para gerar álcool etílico, está descrito na Bíblia. Em plena idade medieval conhecia-se as propriedades ácidas do limão e o alquimista Jabir Hayyan descobriu no século VIII o ácido cítrico (C6H8O7). Com o fim da química tradicional no século XVIII, o químico Sueco, Torben Olof Bergman, dividiu, a química, em:

Torbem Olof Bergman

  • Química Orgânica     – ( Química dos compostos existentes nos organismos vivos )
  • Química Inorgânica – ( Química dos compostos existentes no reino animal )

 

Inicialmente, pensava-se que a síntese de substâncias orgânicas, seria apenas verosímil com a interferência de organismos vivos, contudo, veio a demonstrar-se que estes compostos podiam ser sintetizados em laboratório. Daí, que a designação de compostos de carbono ter vindo a substituir a de compostos orgânicos, já que este elemento é “ denominador comum “ a todos eles.

 

A facilidade com que os átomos de carbono (6C 1s2 2s2 2p2, 4 electrões de valência) formam ligações covalentes (simples, duplas ou triplas)  com outros átomos de carbono ou com átomos de outros elementos explica o número e a variedade de compostos orgânicos. Os compostos orgânicos podem ser agrupados e classificados de acordo com a presença de determinados grupos de átomos nas suas moléculas (os grupos funcionais), grupos esses que são responsáveis pelo comportamento químico dessas famílias de compostos orgânicos. Qualquer composto orgânico é constituído por uma cadeia carbonada não reativa, “o esqueleto” e por uma parte reativa, o grupo funcional.

Os hidrocarbonetos são substâncias moleculares binárias, pois são apenas formadas por carbono e hidrogénio. Quando na cadeia carbonada só existem ligações covalentes simples, trata-se de um hidrocarboneto saturado, caso existam ligações covalentes duplas ou triplas, entre os átomos de carbono, trata-se de um hidrocarboneto insaturado. Há dois grandes grupos de hidrocarbonetos: os hidrocarbonetos aromáticos (contêm, pelo menos, um anel benzénico) e os hidrocarbonetos alifáticos (não contêm nenhum anel benzénico e as suas cadeias carbonadas, podem ser abertas ou fechadas e qualquer delas pode ser ramificada (C3 ou C4) ou linear (C1 ou C2)).

Os explicadores do Quantum – Centro de Explicações de Lisboa, ajudarão os alunos a compreender estes conceitos e outros, como as nomenclaturas dos alcanos, dos alcenos e dos alcinos, esteres, aminas, polímeros e muito mais …

Peça informações e consulte os nossos preços, temos respostas pedagógicas para si …

Explicações de Álgebra Linear

A álgebra é o ramo da matemática que estuda as aplicações formais de equações, operações matemáticas, estruturas algébricas e polinómios e apresenta-se como uma disciplina (conhecimento) independente em muitos cursos do ensino superior, universitário e politécnico.

A álgebra surgiu no Egipto quase ao mesmo tempo que na Babilônia; mas faltavam à álgebra egípcia, segundo Papiro Moscou e o Papiro Rhind (documentos egípcios datados respetivamente de cerca de 1850 a.C. e 1650 a.C), os métodos sofisticados da álgebra babilônica, bem como a variedade de equações resolvidas.

O sistema de numeração egípcio, relativamente primitivo em comparação com o dos babilônios, ajuda a explicar a falta de sofisticação da álgebra egípcia. Os matemáticos europeus do século XVI tiveram de estender a noção indo-arábica de número antes de poderem avançar significativamente, para além dos resultados babilônios de resolução de equações.

A álgebra, lecionada,  introduz o conceito de variável como representação de números, utilizando expressões em que estas variáveis são manipuladas através de regras operatórias aplicáveis a números, como a multiplicação e a adição.

Estes conceitos permitem, nomeadamente resolver equações.

Contudo a adição e a multiplicação podem ser generalizadas, permitindo as suas  definições exactas conduzirem-nos a estruturas, nomeadamente os conhecidos anéis, grupos e corpos, que são estudados na álgebra abstrata.

Os professores do Centro de Explicações de Lisboa, tem respostas pedagógicas para si, ajudando-o a desvendar os segredos da álgebra, explicando conceitos e cálculos :

  • Matrizes, sistema de equações lineares e determinantes ( conceito de matriz, cálculo do deteminante, desenvolvimento de Laplace, matrizes adjuntas e inversas, matriz identidade, propriedades operatórias, fórmula de Gauss-Jordan … etc)
  • Espaços e subespaços vetoriais ( conbinações lineares, dependência e independência linear, base de um espaço vetorial, mudança de base …etc )
  • Transformações lineares ( conceitos e teoremas, transformações do plano no plano …etc)
  • Valores e vectores próprios ( polinómio característico, … diagonalização de operadores, produto interno, tipos especiais de operadores lineares ), entre outros …

O nosso quadro de professores licenciados, mestres e doutorados oferecem-lhe as condições ” sine qua none ” do seu sucesso na cadeira de Álgebra Linear.

Navegue neste site e contacte-nos

Explicações de Análise Complexa e Equações Diferenciais

Uma equação diferencial é aquela em que a função incógnita surge sob a forma da sua respetiva derivada. Os fundamentos das equações diferenciais estão tão dominados pelas contribuições do matemático Leonhard Euler, que sentimos quase um impulso em afirmar que a história desta temática começa e termina com ele. Mas obviamente que isso, seria uma simplificação grosseira do seu desenvolvimento. Existem vários contribuintes importantes, e aqueles que vieram antes de Euler foram necessários para que ele pudesse entender o cálculo e a análise, necessários para desenvolver muitas das ideias fundamentais.

Análise Complexa e Equações Diferenciais

Com efeito, as equações diferenciais começaram com os inventores do cálculo, Newton, Fermat e Leibniz, já que são estes os brilhantes matemáticos que procederam à descoberta para a derivada, que de forma subsequente apareceu em equações. No entanto as equações diferenciais, se exceptuarmos as equações separáveis eram e ainda hoje são difíceis de resolver se não dominarmos técnicas próprias de resolução. O método de separação das variáveis foi desenvolvido por Jakob Bernoulli e generalizado por Leibniz a partir da integral ( antiderivada).

Outros matemáticos deram contribuições relevantes nesta área, como são os exemplos de Joseph Lagrange ( mostrou que a solução geral de uma equação diferencial linear homogénea de grau n é uma combinação linear de n soluções independentes), joseph Fourrier ( resolve a equação diferencial parcial – series de Fourrier), Legrende. Hankel, Bessel, Chebyshev, Hermite ( resolução de equações diferenciais ordinárias), Gauss e Cauchy ( desenvolvimento do conceito de funções de variáveis complexas), Laplace ( melhor entendimento das técnicas numéricas e da integração), etc .

Muitos dos alunos , apresentam  algumas dificuldades no entendimento do conteúdo programático desta unidade curricular .

Os professores ( mestres , doutorandos e doutorados ) do nosso Centro de Explicações, poderão ser uma

Leonhard Euler

 

ajuda relevante para o seu sucesso na  “cadeira“  de Análise Complexa e Equações Diferenciais, permitindo a compreensão das coordenadas polares, séries numéricas e de potência, funções harmónicas e núcleo de Poisson, integrais de linha,  funções  C  diferenciáveis, regra de derivação, fórmulas integrais de Cauchy, fórmula de Taylor, integrais de variável real, integrais impróprios, transformada de Laplace e a resolver equações e muito mais …

Contacte-nos, temos respostas pedagógicas para si.

Equação diferencial

 

ORDEM DE UMA EQUAÇÃO DIFERENCIALé a ordem da mais alta derivada que nela aparece.

GRAU DE UMA EQUAÇÃO DIFERENCIAL: considerando as derivadas como um polinómio, é o grau da derivada de mais alta ordem que nela aparece.

SOLUÇÃO OU INTEGRAL GERAL: é toda a função que verifica, identicamente, a equação diferencial e vem expressa em termos de n constantes arbitrárias. Se a equação é de primeira ordem, aparece uma constante, se é de segunda ordem, duas constantes, etc..